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Abstract. We study the effects of peculiar velocities on statis- 
tical measures of galaxy clustering. These effects occur when 
distances to the galaxies are estimated from their redshifts. It is 
assumed that the clustering pattern results from the gravitational 
instability of initially Gaussian, small-amplitude perturbations 
of a Friedman-Lemaitre cosmological model. Explicit expres- 
sions are given for an arbitrary density parameter R of the 
model, both when the cosmological constant A, is zero, and 
when the model is spatially flat R + A/3H2 = 1. 

Kaiser (1987) had analyzed the redshift distortion of the 
two-point correlation function. This function determines the 
variance of the density field distribution function and can be 
computed using linear perturbation theory. We show here how to 
compute higher order moments in redshift space, paying special 
attention to the skewness, or third moment of the density field, 
and its Fourier space counterpart, the bispecuum. This calls for 
a (weakly) non-linear analysis. 

We rely on a perturbative expansion of particle trajectories 
in L.agrangian coordinates, using the formalism introduced by 
Moutarde et al. (1991) and further developed by Bouchet et 
al. (1992. 1994). This formalism extends to higher orders the 
Zei’dovich first order (i.e. linear) solution (1970). The lowest 
non-vanishing contribution to the skewness comes from the 
first and second-order terms in penurbation theory. Therefore, 
using Zel’dovich approximation would not be self-consistent 
and would yield inaccum& results. We show that a physically 
consistent and quantitatively accurate analysis of the growth 
skewness in redshift space can be obtained from second-order 
Lagrangian theory. 

With practical applications to redshift surveys in mind, we 
also study the effects of spatial smoothing of the evolved density 
field. The necessary formalism was developed by Juszkiewin 
and Bouchet (1991) and Juszkiewin et al. (1993a). Here we 
give the tirst complete account of these calculations; we also 
extend the formalism by explicitly taking redshift distortions 
into account. We give analytic expressions for the gravitation- 
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ally induced skewness as a function of the power spectrum and 
of R, for a spherical top-hat and a Gaussian smoothing filter. 

We compare our analytical predictions with measurements 
performed in numerical simulations, and find good agreement. 
These results should then prove useful in analyzing large scale 
redshift surveys. in particular, our results, in conjunction with 
the recent suggestion of Fry (1994). may solve a well known 
problem which always arises in conventional dynamical deter- 
minations of the mean density of the universe. Such studies 
produce estimates of R which are coupled with the parameters 
describing the bias in the galaxy distribution. As a result. a 
biased Q = 1 model is dynamically indistinguishable from an 
open, unbiased, one. For the first time, it may become possible 
to break this degeneracy, and decouple the estimates of linear 
and non-linear bias from the estimates of $2 and A. 

Key words: Cosmology - Galaxies (formation, statistics) - 
Methods: analytical 

1. Introduction 

The appearance of structures is distoned in redshift space by 
peculiar velocities. At “small” scales, this leads to the “finger of 
god” effect: pattern are elongated along the lineof-sight due to 
their internal velocity dispersion. This is an intrinsically non- 
linear effect. At “large” scales, the effect is reversed: coherent 
inflows lead to a density contrast increase parallel to the line- 
of-sight. Indeed, foreground galaxies appear further than they 
are, while those in the back look closer, both being apparently 
nearer to the accreting structure. 

Bean et al. (1983) and Davis and Peebles (1983) took ad- 
vantage of the small scale distortion of clustering to estimate 
the pairwise velocity distortion. ‘Ihey were followed my many 
others. On the other hand, Sargent and Turner (1977) showed- 
that the large scale distortion could be used to measure the cos- 
mological parameter R; Kaiser (1987) pointed out by using a 
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linear analysis that, in redshift space, each wave of wavevec- 
tor Iz and amplitude 6k is amplified by a factor (1 + ft (fi)&, 
where fi - no.’ describes the linear growth of perturbations 
[Peebles 1976, 1980 $14, and Bq. (16) below], and pk is the 
cosine of the angle between k and the line-of-sight. The true 
power spectrum, P(k) = (l&l*) in redshift space is replaced 
by 

P*(k) = [l +fm/J:]* P(~); 

its Fourier transform, the two-point correlation function <2, is 
strongly anisotropic in redshift space. This compression along 
the line-of-sight was computed by Lilje and Efstathiou (1989) 
and McGill (1990). Practical improvements to measure Q were 
suggested by Hamilton (1992a). and used (Hamilton 1992b) 
to determine R from the IRAS 2 Jy redshift survey (Strauss 
et al. 1990.1992). Recently, Fisher et al. (1994) measured the 
redshift space & in the IRAS 1.2 Jy redshift survey. Many 
authors preferred though to measure the redshift space power 
spectrum P,(k) (see e.g. Feldman, Kaiser, and Peacock 1994; 
Cole, Fisher, and Weinberg 1994, and references therein). 

Most of the analytical calculations performed in this field 
were done using a purely Eulerian approach. Still, Bouchet et 
al. (1992, hereafter BJCP), building on the work of Moutarde et 
al. (1991). developed a systematic perturbalive approach from 
a Lagrangian point of view. This work was recently extended by 
Bouchet et al. (1994, hereafter BCHJ), complementing a paral- 
lel effort by Buchert (1994, and references therein). As we shall 
see, it is straightforward to use the Lagrangian approach to in; 
vestigate the redshift distortion effect in the weakly non-linear 
regime. For example, Bouchet et al. (1992) indicated that the 
skewness factor S’3 (see below) of the unsmoothed density field 
is nearly invariant under the transformation to redshift space. 
The corresponding demonstration, which uses an “infinitely re- 
mote observer” approximation is given in Bouchet et al. (1994, 
hereafter BCHJ). In this paper we consider a slightly different 
approximation, valid in the limit of large samples, similar to the 
limit considered by Kaiser (1987). It gives a result, nearly iden- 
tical to the one of BCHJ. We generalize the first order power 
spectrum results of Raiser lo second order quantities, such as 
the bispectrum (6k,6k,6k,)k,+k,+,,+, and its Fouriercounterpart, 
5. 

The skewness factor, Ss, is the ratio of the third moment 
of the probability distribution function (PDF) of the density 
contrast 6 G p/ (p) - 1 to the square of its second moment (its 
variance) 

s3 = w 
-yp (2) 

Throughout this paper, the symbols (...) denote ensemble av- 
erages, and the redshift space counterpart of a quantity A is 
denoted by A,. In (Eulerian) linear theory, a normal PDF re- 
mains normal, so that S3 (as well as higher order factors SN) 
is zero for an initially Gaussian field. Of course, linear theory 
(Eulerian or Lagrangian) is inadequate to describe indicators 
which are intrinsically of higher order. Under the influence 

of weakly-nonlinear gravitational instability, mode-mode cou- 
plings occur and establish a non-zero value for S3, which re- 
mains constant until strongly non-linear effects come into play. 
For any smoothing scale, the ratio 5’3 describes the asymmetry 
between the positive and negative tail of the PDF As was shown 
recently by Juszkiewicz et al. (1993b). the low order moments 
of the PDF are enough to describe the weakly non-linearevolu- 
tion of the PDF, thanks to an Edgeworth expansion in powers of 
the variance. The contribution of the third order moment i.e. of 
the skewness itself, can indeed already give a good idea of the 
overall shape of the PDF for (a*) 2 0.5 (more precisely, the 

tails are reliably described within (62)-“2 standard deviations 
from ~5 = 0). 

Juszkiewin and Bouchet (1991, hereafter JB) and 
Juszkiewin et al. (1993a, hereafter JBC) considered the effect 
of smoothing on Sj, when the evolved density contrast field 6 
is spatially averaged with a weight IV, called “window func- 
tion”. In the unsmoothed limit obtained by Peebles (1980) for 
an Zz = 1 model, 5’s depends neither on scale nor on the power 
spectrum, and equals to 34/7. But the skewness factor of the 
smoothed density field depends on both the shape of the win- 
dow function and the local slope of the power spectrum. If P(k) 
is not scale-invariant (as in CDM for instance), this induces a 
further scale dependence. For a top-hat window (a sphere with 
sharp boundaries) and a scale-invariant power spectrum with an 
index n in the range -3 5 n < 1, they obtained 

s3 34 6 =~+7(R-2’63- 1)-(n+3), (3) 

and the above result was derived for real space. JBC considered 
Gaussian filters as well. Bemardeau (1993, 1994) generalized 
tberesultaboveforhigherorderS,,,,N > 4,inthecaseofatop 
hat smoothing filter, while the kurtosis in the Gaussian smooth- 
ing filter case was recently obtained by Lokas et al. (1994). 
These analytical results are fully confirmed by numerical sim- 
ulations (e.g. Bouchet and Hemquist 1992, Weinberg and Cole 
1992, JBC. Juszkiewicz et al. 1993b. Lucchin et al. 1994, Lokas 
et al. 1994). In this paper, we give the first complete account of 
the technique introduced by JB and JBC to estimate the skew- 
ness of the smoothed density field. These calculations, which 
here appear in the Appendix B, were earlier presented by JB 
and JBC in a rather terse form’ When necessary, the formalism, 
presented here is also extended to combine smoothing effects 
with the effects of mapping from real space to redshift space. 
This enables comparisons between analytical predictions for 
an initially Gaussian field and practical measurements in the 
observed three-dimensional galaxy catalogs, such as those re- 
cently performed by Bouchet et al. (1991, 1993) in the IRAS 
1.2Jy galaxy redshift catalog and by Gaztahaga (1992) in the 
CfA and SSRS redshift catalogues. 

’ Although we never used the the usual hypocritical “it is easy c 
show” phrase. our Letter to the ApJ. (JBC) may have suggested that 
implicitly. Since it was not so easy at all (in fact it has taken several 
months to derive these results), and since we decided that it is awkward 
to keepdistributing hand-written notes to colleagues.asking for details 
of our calculations. we decided to include them in this paper. 
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This paper is organized as follows. In Sect. 2, we recall 
the needed Lagrangian theory results and show how to derive 
the effect of peculiar velocities. We analyze the bispectmm in 
Sect. 3. Smoothing is considered in Sect. 4, where we compare 
our analytical results to numerical simulation measurements. 
Section 5 is the conclusion. 

2. Redshift Distortion in Lagrangian Theory 

We start by recalling some results of BJCP and BCHJ. The 
following section is devoted to the specific case of the redshift 
distortion. 

2.1. Basics of the Perturbative Lugrangian Approach 

We consider a non-relativistic pressureless fluid, in a Friedman- 
Lernaltre background model in the the matter era. During that 
epoch, and at the scales of interest ( 2 1OOMpc). the perturba- 
tions can be treated as a ideal pressureless fluid in the Newtonian 
approximation (cf. Peebles, 1980). The scale factor of the met- 
ric is denoted by a. Throughout, we use comoving coordinates 
z = r/a, where r stands for physical (expanding) coordinates. 
In the Eulerian approach, the primary quantity of the analysis is 
usually the density contrast field 6. In the Lagrangian picture, 
each fluid element is tagged by its unperturbed Lagrangian 
@moving) coordinate q, and the corresponding value of the 
displacement field q. This vector field connects at any time the 
element’s Eulerian and Lagrangian position through 

z = q + !D(t, q). (4) 

The Jacobian of the transformation from q to z permits 
to express the requirement of mass conservation simply as 
&>laz/aql d’q = P(qhPq, or 

-I 

a[z(q)l= 2 - 1. 
I I 

(5) 

In the weakly non-linear regime, solutions of the motion 
and field (Poisson) equations can be obtained by means of a 
perturbative expansion of the displacement field 

gl = Et@(‘) + E2q#E’2’ +&p + . . . (6) 

where E is a formal parameter allowing to conveniently keep 
track of the various orders in the calculations. In the following, 
we need only the first two orders, which are separable: 

~W 9) = sdt)~(‘)tq), (7) 

e2+t, q) = g2(t)G’2’(q). (8) 

The spatial part ‘ii”‘(q) is the initial displacement field (this is 
Zel’dovich (1970) solution), while the second order obeys 

vq.$‘2’ = 
x[ 

a@‘) a$(.‘) 
Al 

&g!” ~Q~l’ 
-2 

icj hi aqj aqj T$ 1 ' 
(9) 

with V, = (d/aql , a/aq2, a/aq3). The assumption of irrota- 
tionnal flow leads to the constraints 

v Q x *(l)= 0, v q x !BC2) = 0. (IO) 

The displacement field iii(‘) may be related to the initial Eu- 
lerian density contrast &(z) = O(E) through the equation (5) 
expanded to linear order 

EVq .e(“(t, q) = S[z(q)l + U(E2), (11) 

and evaluated at t = 2; on the 1.h.s and at z = q on the r.:h.s.. 
The n-th order growth rates, g,, depend on the matter content 

of the model. For a background model with A = 0, the fastest 
linear growing modes is identical to the well-known linear 
Eulerian growth rate D(t) of the density contrast (e.g. Peebles 
1980, BJCP), as can be seen from (11). The second order growth 
rate behaves according to 

92 N -;n-2/63g;, A = 0. (12) 

This approximation is better than 0.4% for 0.05 2 0 A 3 
(BJCP). We will also consider a flat Universe with A # 0,’ 
that is R + A/3H2 = 
given by (BCHJ) 

1. The second order growth factor is then 

92 ‘v SZ+A./3H2= 1. (13) 

Details of the derivations of these results may be found in BCHJ. 

2.2. Redshift distortion in the Lugrangian framework 

Let us now consider the case of spherical coordinates, when 
radial distances to the observer are estimated by means of red- 
shift measurements. In that case, peculiar velocities distort the 
clustering pattern in redshift space, and the large scale infall 
increases the apparent density contrast. We will now use the 
Lagrangian formalism to derive an analytic expression, relat- 
ing real space and redshift measurements, including weakly 
non-linear corrections. 

The redshift space comoving position L of a particle located 
in r(q) = a z(q) is 

x = ($)-I ($f) f. 

Its modulus is then given at second order by 

(14) 

2 = qr +E [I + fdOls,(t)W’(q) 
+ E2 11 + fitt)] S?(1)@2’(9; + O(E3), - r (15) 

where qr stands for q . r/r. In the above expression, we have 
explicitly used the separability of 9”’ and !I!li’2’, and defined 
the logarithmic derivatives of the growth rates 

fl = ta/gl)agl/aa, and f2 = (a/in) &a/au. (16) 
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Limited expansions of fr and h near R = 1 yield, in the A = 0 
c=c fl =: i14f7 and f2 ': 2W9. On the other hand, a better 
analytical approximation for Q between 0.1 and 1 is given by 

fl x Q3f5, and f2 x 2R4/‘, when A = 0. (17) 

The approximation for fr was proposed by Peebles (1976). 
while BJCP proposed the one for f2. For a flat universe with 
A # 0, BCHJ suggest 

f, x OSi9, and f2 x 2Q6i11, when Q + s = 1. (18) 

This fl term is very close to the fits previously proposed by 
Lahavetal. (199l)andMartel(l991). 

With the coordinate transformation (15) we could directly 
compute the density contrast in redshift space according to the 
mass conservation requirement, that reads, 

-I 

b,(r(q))= g - 1. 
I I 

(19) 

Instead, we proceed in two steps: we map the Lagrangian q 
coordinates onto the Eulerian ones z, and then proceed to map 
the latter onto our I coordinates. We then see explicitly the terms 
brought by the real-to-&shift space mapping. Additionally, it 
makes it easier to handle the fact that the vector q is in general 
not parallel to r’, or in other words qr # q . The mapping from real 
space to redshift space is then simplified by using the Eulerian 
coordinate z = r/a as an intermediate step in the calculation, 
because x or r. After some algebra (see Appendix A-1). the 
density contrast in redshift space can be written as 

with 

61 = -v,. jp, 

62 = (vz.qZ + P.V,(V, .P) 

and 

AI = -fi 

A2 = f+& (z2W)Vz .iP + z -&p"'.V,~~~)) 

+$!'l~(V,.P) 
I 

+ f? 
[ 

[$I']2 
&*2jl+y +3+- 

.z 

+G$ -&2s~1,, II 
- f2 -&(2&p). 

(21) 

(22) 

(23) 

(24) 

Note the introduction of the new displacement fields @tl) and 
&(2) defined by 

&“‘(t x) = *(“(t q = x), I - , $‘2’(t, z) E !4’Ir’2’(t, q = L). (26) 
By definition, they satisfy Eqs. (9). (10) and (1 l), but with all 
derivatives taken and calculations made in z space instead of q 
space. In real space, i.e., when one is interested in the calcula- 
tion of a(z), the terms At and A2 vanish, which is equivalent 
to setting fi = f2 = 0, and the displacements @t’)(t, x) and 
8”‘(t, z) must be replaced by the Eulerian displacement fields 
@(?(t, 2) E Q(‘)(t, q = z) and fit2’(t, z) z Q”‘(t, q = 2). 

The expressions A1 and A2 contain terms of the form 
F(r)/2 or F(r)/r2, where F(r) is a quantity without preferred 
symmetry nor direction, because we assume the universe is spa- 
tially homogeneous and isotropic. When I is large compared to 
the scale ! considered (which can be for instance a smoothing 
scale, a separation between two objects, or simply a Fourier 
space wavelength), these terms can be neglected compared to 
those in F(r). From a statistical point of view, this requires the 
volume sampled, V, to have a size much larger than !. In that 
case, when statistical quantities are measured in that volume 
V. even if the small L contributions are taken into account, the 
terms in (F(r)/z) and (F(r)/r*) have a negligible weight. We 
now assume this “large volume” limit. The quantities Ai and 
A2 then simplify dramatically and read 

Al (27) 

A2 = f,;{V,.($!',9"',] +& {$$ljT} 

- f2#‘. 

Our assumption is ahwst equivalent to the “infinitely remote 
observer” approximation used by BCHJ. But there is a sig- 
nificant difference: instead of using a Cartesian grid deformed 
along the line-of-sight, we keep the radial feature of the redshift 
distortion, i.e., we remain in spherical coordinates. 

3. Redshift distortion of the bispectrum 

In this section, we use a statistical approach and work in 
Fourier space. We first compute the bispectrum B(k 1, k2, k3) E 
(wwwk,+k*+t,dl in redshift space, in the weakly non-linear 
regime. Then we quantify the effect of the redshift distortion 
by using the reduced amplitude & of the bispectrum which was 
introduced by Fry & Seldner in 1982 (hereafter FS). 

The initial fluctuations are assumed to be Gaussian- 
distributed. In Fourier space, this is equivalent to 

(h&to) = bDirac(k + l)R(k), t29r 

(&(k$~(l)8i(T7l)) = 0, (30) 

(bi(~)~i(Ifbi(m)6^i(n)) = bac(k + I) 6Dirac(m + n) 

Pi(k + PUlIl. (31) 
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and so on. Here “perm.” stands for the terms obtained try pair 
permutationsof k, 1, m, n (3 terms in all). The function &(k) is 
the Fourier pansform of the initial density contrast 6;(Z), and 
Pi(k) E< Iai( > is its power spectrum. 

It is convenient to evaluate the quantities 51,&, Al and 112 
defined in Sect. 22 by using Fourier analysis. The correspond- 
ing integrals are given in Appendix A.2 [Eqs. (Al6). (Al8), 
(Al9), (A2O)I. After taking their ensemble averages, we get at 
lowest order in E, 

P,(k) = bl P(k), (32) 

with 

bl = I+ ifI + if?. (33) 

This is nothing else but the result of Kaiser [1977, Eq (I)], 
when averaged over angles. The bispectrum in redshift space is 
given by 

B,(kl, k2 , k3) = PWP(k2) [a0 + a2 (30s~ 012 + a4 cos4 812 

+ (us cosf42 + aj cos3 012) 

+ (1 - cos28,2)2 
XI (k;+k;) +x2k,k2cost9,, 

k; + kz” + 2 k, k2 cos e12 

Again,wecanset fl = f2 = 0 tohavethevalueofthebispectrum 
in real space and get the well known expression (obtained by 
Fry in 1984forR= 1) . 

Btkl, h M = P(kl)P(k2) [2+cosB,2 (z+$) 

(1-cos28,2) +cyc. 
I 

(37) 

The values of ai/bf, xi/b; are listed in Table 1 for 
(0, A/3H2) = (1 , 01, (0.1 , 0) and (0.1,0.9). Except when R = 1, 
we have (ai/!J:), N (ai/bf)rd. In other words, when R is suf- 
ficiently small compared to unity, and A is arbitrary, we obtain 

B,tkl,k2,k3)Nb:Btkt,k2,k3). (38) 

When fI approaches unity, the differences between real space 
and redshift space are mainly introduced by the factors ao/bi, 
m/b: and aj/b:. 

Table 1. Factors by, a, and z1 involved in the computation of the 
power-spectrum and tbe bispectrum for various values of R 

redshift space 

I 

real space 
Fact. R=l t-l=.1 Q=.l’ R=l R=.l f2=.la 

+ cyc (34) Q, 1.867 1.180 1.201 1 1 1 

wherecost).. *j E ki.kj/(kikj). Here "CJX." stands for the terms no/b: 1.335 1.459 1.429 1.429 1.461 1.436 

obtained by cyclic permutation of the triple-valued indices. The al/b: 1.050 1.005 1.006 1 1 1 

factors Ui* i = 0, . . . ,4, ~1 and x2 depend on the values of R 
a& 1.043 s770 .6145 5714 5389 5644 
adb: .1603 .0149 .0180 0 0 

and A. We list them here: 
0 

ad/b: .0411 a034 .0044 0 0 0 

a0 = 

- 

a1 = 

a2 = 

+ 

a3 = 

a4 = 

Xl = 

22 = 

and 

2 
(I- K) + -(2 - K)fi + 

3 
1 6 

“f2$ + Efi + 35 1 if”, t 

-q/b: .0328 .0060 .OC64 0 0 0 
m/b: .0281 .0013 .oolS 0 0 0 

’ For a flat Universe with A/3 Hz = .9 

(1 + K) + $2 + tc)fl + $23 - df; + $f: + 

“f2’3+E I * 6f -if?), 

&f? + &n + gff. 

(35) 

? 

To illustrate our results, it is convenient to use the reduced 
amplitude Q of the bispecuum. It is defined by (FS) 

ml 1 k2, Ed = 
B(h,kZ,k3) 

P(k,)P(kz) + P(k2)P(kJ) + P(k3)P(k1) .(39) 

The parameter Q, defined above, must satisfy Eq. (34) and the 
constraint El + h2 + k3 = 0. Therefore, Q can be described as 
a function of kl , k2 and cos 8 G cos 012. It also depends on the 
shape of the initial power spectrum and was first measured in the 
galaxy distribution by FS. Comparisons of theoretical predic- 
tions with N-body experiments were done by Fry et al. (1993), 
In the weakly non-linear regime. they found a good agreement 
between the numerical measurements and the predictions of 
second order perturbation theory. 

Figure 1 gives Q as a function of 0 for ki/k2 = 2 and 
various values of (Sz, A) I(1 , 0). (0. I, 0) and (0.1,0.9)]. We have 

K = 92/g;- (36) considered 5 scale-invariant power-specua, with n = -3, -2, 
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0.2 0.4 0.6 0.8 1 

e/n 

Fig. 1. The reduced amplitude Q of the bispectrum in real space versus 
the wavevectors angle 6 in the case ki/lil = 2. for R = 1 (solid line), 
12 = 0.1 and A= O(shortdashes)and R = 0.1 andR+A/3H2 = 1 (long 
dashes). Scale-Invariant power spectra are considered with n = -3 , 
-2. -1.0, +l (from top to bottom). 

-1, 0 and +l. In that case, Q E Q(kl/k2, cos8r2, n; $2). As 
expected, the dependence of Q on $I and A is very weak. The 
first panel of Fig. 2 is theredshift spaceanalog of Fig.1. We have 
kept the solid curves, which give Q in real space for R = 1. As 
we already saw above, there is a significant difference between 
the real and redshift space values of Q only when R 2 1. This 
difference can be as large as - 20%. but the general features 
of Q versus 8 and kr/kz are not changed, as confirmed by the 
second and third panels of Fig. 2 which shows Q versus 0 for 
kl/k2 = 1 and for rlr /& = 
R= 1. 

10 in real and redshift space when 

Finally, when kt/)~ = 2, the ratio Qz/Q depends only 
weakly on the initial power spectrum, as can be seen in Fig. 3. 
We find that the R-dependence of this ratio for iz S I is given 
by 

Qz(h, h k3) = Q(h, h, kd[l + A(kl, kz, k3)], (40) 

where A(kl , k2, k3) is a smoothly varying function such that 

lA(h, kz, MI 2 0.2 R. (41) 

So far, all of the quantities derived here were statistical measures 
of the spatial distribution of matter. However, if the galaxy 
distribution is biased with respect to that of matter, the reduced 
moments (like the skewness), estimated from counts of galaxies 
do not have to coincide with those for the matter. Following Fry 
(1994), we will now rederive the effect of a local biasing on 
the Q(kI/kz, 8, R, n) parameter. The local biasing prescription 
assumes that the number-density field of galaxies, n,(z) is a 
smooth local function f of the underlying density field of the 

4L, I I, I,, , , , , , , , , I I I 

k,/k;=2 j”“- 1 

0.4 0.6 0.8 1 

e/n I, I, 1 , , , , , , , , , , 1 I I .-. 

e/7r 4~1,,,,,,(,,,,(,, I I I 

'0 
! 1 I I I .._..,_,_..._ , 1 , , , , 1 , , , 

0.2 0.4 0.6 0.8 1 

e/n 
Fig. 2. The reduced amplitude Q of the bispectrum as a function of- 
the wavevectors angle B, in real and redshift space for several values 
of kt /kz. AS in Fig. 1, we consider scale-invariantpower-spectra with 
7~ = -3 (top curve). -2. -1.0. +I (bottom curve). In all panels, the full 
line and the dotted line refer respectively to real and redshift space for 
fi = 1. In the top panel, the short dashes correspond to f-2 = 0. I, A = 0 
and the long dashes to 0 = 0.1.12 + A/3H2 = 1. in redshift space. 
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Fig. 3. The ratio QL/Q as a function of angle for kI/kz = 2, R = 1 
and several scale-invariant power-spectra, with n = -3 (fun line). 
n = -2 (dots). R = - 1 (short dashes), n = 0 (long dashes), n = +l 
(dot-dashes). 

matter, p(z), that is n,(z) = f[p(z)]. This allows a Taylor 
expansion 

6, 
b,,,bm 

=b6+C:&T 

where b is the usual “linear bias”, while higher order terms allow 
for nonlinear biasing. They are also necessary to ensure that 
each term in the perturbative expansion for 6, has a zero mean 
value (cf. Fry & Gaztaflaga 1993; Juszkiewin et al. 1993b). 
To derive the relationship between Q and its estimate based 
on galaxy counts, Qo, it is enough to substitute the expansion 
for a,(S) into the perturbative series for 6, then rederive the 
bispectrum and the Q parameter. The result of all this is simply 
given by (Fry 1994) 

(43) 

Thus both the linear bias b and the non-linear bias 62 can be 
determined by comparing the measured shape of QJkl/k2,0) 
with the theoretical predictions for the underlying matter field 
(assuming that indeed large scale structures arose from the grav- 
itational development of Gaussian initial conditions, which can 
be tested otherwise). This may solve a well known problem 
which always arises in conventional dynamical determinations 
of the mean density of the universe. Such studies tend to produce 
only estimates of R0.6/b, where the linear bias parameter, 6, is 
unknown (see, e.g. Strauss et al. 1992). As a result, a biased 
R = 1 mode1 is dynamically indistinguishable from an open 
unbiased one. Therefore, in conjunction with our calculations, 
which allow to properly take into account the effects of redshift 
distortionon Q. Fry’s result may for the first time provide a way 
to use redshift surveys to break the degeneracy, and decouple 

the estimates of linear and non-linear bias from the estimates 
ofRandA. 

4. Skewness of the smoothed density field in redshift space 

We-now leave Fourier space and turn to the skewness factor 
4 f (@) / ( 62}2 of the smoothed density field. The smooth- 
ing windows considered here are the most widely used ones, 
i.e. the Gaussian window and the top-hat window. Firstly, we 
study analytically the redshift space distortion in the weakly 
non-linear regime. Then, we compare analytical results with 
careful measurements in N-body experiments and estimate a 
dynamical range of validity of these results. 

4.1. Analyrical predictions in the weakly non-linear regime 

In the weakly non-linear regime, one can use second order pcr- 
turbation theory to compute S3 (JB, JBC and Appendix A-2). 
By using Fourier integrals, the low orders moments of the den- 
sity field (6’) and ( t53) can be written in terms of, respectively, 
the power spectrum and the bispectrum. This gives 

a2(e) s (a2> = J & P(k) W,?(k), 
(q= //s~(kl,k~,-~q --k2) 

w 

Wt(k1) Wdkd Wdlh + k20, (45) 

where Wt(k) stands for the Fourier transform of the smoothing 
filter of characteristic size e. These expressions are of course 
also valid in redshift space. But then the quantities P(k) and 
B(lzl ,122, k3) have to be replaced by their redshift space coun- 
terparts P,(k) and B,(iG,, &, ks). Appendix B gives a full 
length account of the computation of the redshift space skew- 
ness (and hence of the real space if one takes fl = f2 = 0) for 
scale-invariant initial power-specua, with or without smooth- 
ing. Here we just give the main results. We first consider the case 
without smoothing. In some cases, the integrals in Eqs. (44). 
(45) may diverge. In order to insure convergence, one then 
needs to introduce a large-k cutoff in the power spectrum. Nev- 
ertheless, the ratio S3 = (6’) / ( 62)2 may still be well defined, 
provided it remains finite when the cutoff tends to infinity. In 
redshift space, it is given by 

3 
S3+ = - a0 + ( 

a4 2+-+x ) 
6; 35 > (46) 

where ,y depends on the shape of the power spectrum, and is 
hard to compute analytically. Nevertheless, it can usefully be 
bounded as follows 
29 23 - 19 7 
‘zij”l - -x2 < x < ~X1-k 120x2. 

120 (47f 

By taking fr = f:! = 0 in Eq. (46). (35). and (36) we recover 
the familiar value of S3 in real space, that is 
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which is independent of the initial power spectrum and nearly 
independent of R, as found by BJCP and JBC. The following 
values of Ss,, , 

Cl = 1, A = 0, S3,, = 5.01 f 0.02, S3 = 4.86, 
n = .l, A = 0, s3,, = 4.95 * 0.01, ss = 4.92, (49) 

l-l = .l, A/3H2 = .9, S3,, = 4.89 f 0.01, S3 = 4.87, 

show that the projection in redshift space does not significantly 
change the value of the skewness factor of the unsmoothed 
density field. This confirms the results of BJCP and BCHJ. 
Indeed, by using their “infinitely remote observer” approxima- 
tion, BJCP and BCHJ had found SS,~ = 5.07 f 0.07 for Q = 1 
ad S3,, = 4.96 & 0.03, for R = 0. I (-1 = 0). These results are 
in a good agreement with those obtained here, as expected. 

Numerical values of S3 in real and redshift space for a 
Gaussian and a top-hat smoothing are listed in Tables 2 and 3. 
Figure 4 summarizes the behavior of skewness when the spec- 
tral index n is varied, for background model with A = 0, and 
R = 0.1 or R = 1. JB and JBC discussed rather extensively the n 
dependence of Ss, and JBC had found that S3 is nearly indepen- 
dent of R. Here we note that this remains true for spatially-flat 
universes with non-vanishing cosmological constant. 

The mapping from real to redshift space brings only very 
small changes, except for values of R close to unity. In the case 
R = 1, the difference between S3,, and S3 increases with n, but 
remains small, at most of order 15%. This behavior is maybe 
slightly different from what one could have naively expected 
from the analysis of the bispectrum (e.g. Fig. 3). In that case, 
indeed, the effect of a redshift space projection appeared to be 
of the same order for any value of n. For a top-hat filter, the 
linearrelation between 4 and n in real space maps intoanother 
linear relation between S3,L and n. For example, when Q = 1, 
S3,* is well fitted by 

s3,z = y - l.l5(n+ 3). (50) 

This is to be compared with the real space values given by 
Eq. (3). 

Table 2. Skewness in redshift and real space for different power spectra 
P(k) = k” with Gaussian smoothing 

Skewness 
in tedshift space in real space 

n R=l z2=.1 R=.l’ Q=l Q=.l n=.ta 

-3 5.022 4.947 4.894 4.857 4.922 4.871 
-2 4.043 4.1 4.042 4.022 4.089 4.036 
-1 3.364 3.54 3.475 3.468 3.541 3.484 

0 2.914 3.217 3.139 3.144 3.228 3.162 
1 2.652 3.108 3.012 3.029 3.132 3.051 

a Fir a flat Universe with A/3H2 = .9 

Table 3. Skewness in redshift and real space for different Rower spectra 
P(k) = k” with top-hat smoothing 

Skewness 
in redshift space 

I 

in real space 
n a=1 n=.1 R=.l’ n=1 R=.l R=.l’ 

-3 5.022 4.947 4.894 4.857 4.922 4.871 
-s/2 4.443 4.439 4.384 4.357 4.422 4.371 

-2 3.868 3.932 3.876 3.857 3.922 3.871 
-312 3.294 3.425 3.367 3.357 3.422 3.371 

-1 2.72 2.917 2.858 2.857 2.922 2.871 
-l/2 2.144 2.41 2.349 2.357 2.422 2.371 

0 1.557 1.902 1.839 1.857 1.922 1.871 

’ For a flat Universe with A/3H2 = .9 

4.2. Measurements of S3 in Q = 1, scale-invariant. N-body 
sifnulations 

Numerous previous comparisons with N-body simulations 
showed a very good agreement with second order perturbation 
theory predictions up to a (density contrast) variance of order 
unity&e, e.g., JBCand Juszkiewicz et al. 1993b). However, all 
these measurements were made in real space. Here we extend 
these tests to the predictions concerning the redshift distortion 
in order to determine their range of validity. In particular, it is 
important to lind out, when strongly non-linear effects, like the 
“fingers of god”, become large enough to invalidate our pertur- 
bative results. Section 4.2.1 describes the simulations done, the 
measurements method, and our error estimates, while section 
4.2.2 discusses the results. 

4.2.1. Measurement: method and uncertainties 

Using the PM code of Moutarde et al. (1991), we performed 
three N-body simulations with R = 1, 643 matter particles in 
a 1283 grid, and scale-invariant initial conditions with P(k) = 
A k”, n = 0, -1, -2. Following Efstathiou et al. (1988). we 
picked a normalization of the initial power spectrum so that it 
matched the white-noise level at the Nyquist frequency of the 
particle grid, except for n = -2. In that case, the normalization 
constant A was chosen 4 times smaller. The density field was 
estimated by convolving the particle distribution with either a 
Gaussian filter of half-width !, or a spherical window of radius 
e (all lengths are expressed in units of the size of the simulation 
box Ltjo, f I). 

In principle, the only relevant scale in the simulations is the 
correlation length to, for which the two-body correlation func- 
tion & is unity. Thus measurements made at different times 
of a simulation should give statistically equivalent results pro? 
vided there are made at the same fixed fraction of that (time- 
dependent) scale .!&. As far as S3 is concerned, it should thus 
be constant at constant variance (for a given value of n). If the 
expected scaling behavior is only approximate, it may come 
from one or several of the following numerical limitations: 
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Fig. 4. Skewness factor in real and redshift space, for Gaussian and top-hat smoothing as a function of the power spectrum index n. 

1. Initial conditions: they were created by slightly displac- 
ing matter particles from a regular pattern by using the 
Zel’dovich approximation. This is not totally innocuous. 
Firstly, the constraint arising from this regular pattern may 
contaminate the latter measurements (in particular in under- 
dense regions, seee.g. Bouchet et al. 1991, Bouchet & Hem- 
quist 1992, Colombi et al. 1994). Secondly, the Zel’dovich 
prescription is only valid at first (linear) order, and thus 
does not set up properly second order quantities such as the 
skewness (JBC). One thus has to wait long enough for tran- 
sients to become negligible. Typically, the correlation length 
needs to be larger than the mean interparticle distance. This 
means that we should have 

to 2 l/64 2: 0.0156. (51) 

2. finire spatial resolufion: Bouchet et al. (1985) showed that, 
in the linear regime, the effect of the grid could affect the 
linear growth of fluctuations on scales substantially larger 
than the grid scale AZ (say 8Ax for a typical PM code 
without a staggered mesh, if better than 10% accuracy per 
mode is required). On the other hand, the transfer of power 
in the gravitational clustering problem appears to proceed 
from the large to the small scale. This means that “gravity is 
forgiving”, and reasonably accurate results in the strongly 
non-linear regime can he obtained even on scales compa- 
rable to the cell size (e.g. Weinberg et al. 2001, but PM ve- 
locities may systematically be underestimated by as much 
as 20%). Thus provided that our measurements are such 
that the correlation length PO remains large as compared 
to the grid scale (but small as compared to the box size), 
our skewness measurements should be accurate. Indeed, 
this insures that measurements on scales comparable to the 
grid scale (log,, e 2 - 2.1) are in the strongly non-linear 
regime, and the weakly non-linear measurements are on 
much larger scales, where a PM code is reasonnably ac- 
curate. Furthermore, we compared our results to those ob- 
tained from high resolution simulations (made with the tree 
code of Bouchet & Hemquist, 1988) with identical initial 

conditions (Colombi et al. 1994). The differences are rather 
small. of order at most ten percent; the measured S3 in the 
high resolution simulations are only slightly smaller than 
the measured S3 in our PM simulations. 

3. Finite volltrne e$ecfs: since we used periodicboundary con- 
ditions, the power coming from scales larger than the box 
size is missing. Also, at scales smaller but close to the box 
size, only a few independent modes of the power spectrum 
are sampled. This increases the uncertainties on the mea- 
surements as one approaches the box size. To minimize 
these effects, one usually imposes log,, e d - 1. But this 
constraint is not necessarily sufficient. Indeed, the large p 
tail of the PDF is determined by just a few large clusters and 
that tail is thus subject to fluctuations due to small number 
statistics, till it reaches an artificial cutoff at pmax (Colombi 
et al. 1994, hereafter CBS). If the volume is large enough, 
these modifications of the true tail happen for such small 
values of the PDF that is has little effect (however, higher 
order statistics are more sensitive to this scale-dependent 
effect than those of lower order). If the correlation length, 
which gives the typical size of a cluster, is small compared 
to the box size, then this effect should also be small and can 
be corrected for (or at least the corresponding error-bar can 
be evaluated. see CBS and Appendix C). 

4. Discrereness eficts: starting from a discrete particle repre- 
sentation, we want to measure statistical properties of the 
underlyingcontinuousdensity field. This shot noise can eas- 
ily be corrected for a top-hat filter and is naturally erased 
by a Gaussian filter. It can be neglected at scales large com- 
pared to the typical distance between two particles in a 
cluster (e.g., Balian & Schaeffer 1989). 
The considerations above lead us to measure u’ and S3 in 

the following intervals 

-2.1 5 log,,(l -1.3, Alog,,F=0.2, 

for a Gaussian filter and 

-2.0 5 log,, e 5 -1.2, A log,, E = 0.2, 

(52) 

(53) 
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Fig. 5. Skewness factor in real space (filled circles) and redshift space (open circles) measured in N-body simulations. The dashes show the 
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for a top-hat filter. The quantity A log,, e corresponds to the 
logarithmic scale step we chose. We used several snapshots of 
each simulation, corresponding to the various expansion factors 
a (with initially a = 1) given in Table 4. For each snapshot, the 
constraint (51) is approximately fulfilled and &, remains rea- 
sonably small (as compared to Lboxr Table 4). With such values 
of & we expect finite volume effects to be small and we do not 
correct for them. However, in order to get an ides of the uncer- 
tainties related to the possible artifacts listed above, we tried 
to compute as realistic error-bars as possible. In particular, we 
used the procedure proposed by CBS to estimate finite volume 
effect errors (see Appendix C. where we discuss in detail the 
error-bars calculations). 

Table4. The expansion factor a and the measured correlation length Co 
corresponding to the various snapshots chosen to measure the skewness 
in our N-body simulations 

n a co 
2.5 0.027 

-2 3.2 0.040 
4.0 0.054 
2.5 0.015 

-1 4.0 0.022 
6.4 0.036 
4.1 0.011 

0 8.1 0.018 
16 0.028 

4.2.2. Measurement results 

Figure 5 displays the measured values of Ss in real (filled cir- 
cles) and redshift space (open symbols) as functions of the 
logarithm of the variance. Left panels correspond to Gaussian 
smoothing and right panels to tophat smoothing. The index n 
of the initial power spectrum increases from top to bottom. The 
dashed and dotted-dashed lines represent the analytical predic- 
tions of second order perturbation theory in real and redshift 
space respectively. They should superpose to the filled circles 
and the open circles in the weakly non-linear regime, i.e., when 
a2 < 1. 

In real space, there is a good agreement between theory 
and measurement in the regime d ;S 1, which confirms the 
results of previous authors. In redshift space, the agreement 
between the second order predictions and the measurement is 
globally less good (except for the case n = -1 with top-hat 
smoothing), unless u, is much smaller than unity, typically 
ui S 0.1. Indeed, the measured quantity &, is seen to be 
considerably smaller than Ss, particularly in the strongly non- 
linear regime. The Ss,, vs. u2 curve tends also to be flatter than 
its real space image, Ss(u’), as already noticed by Lahav et al. 
(1993); the overall deviation from a scale-invariant behavior 
P3b2) = constant] is also much less significant in redshift 
space than in real space. This deviation, which seems in real 
space to increase with decreasing n (in agreement with the 

results of Lucchin et al. 1994) is particularly large for II = -2. 
In the latter case, the measured value of SJ is amplified by more 
than a factor two as compared to the value seen in the weakly 
non-linear regime (left lower comers of top panels in Figure 5). 
Note however that the case R = -2 is expected to be strongly 
contaminated by finite volume effects (as already discussed by 
CBS and Lucchin et al. 1994). This is why the error-bars are so 
large in that case. Furthermore, the measurements of & and 4,, 
are likely to be underestimates of the true value (See Appendix 
C and CBS). 

The fact that Ss,, is much smaller and flatter than S3 in 
the non linear regime is certainly related to the *‘finger of god” 
effect described in the introduction. This is of course a highly 
non-linear effect. It has been analytically studied for the three- 
body correlation function by Matsubara (1994). His results, 
when generalized to averaged correlations should match our 
measurements. Furthermore, it is likely that this finger of god 
effect is also responsible for the slow convergence toward the 
penurbative predictions when the variance is decreased. Indeed, 
it smears dense strnctures along the line-of-sight up to fairly 
large scales, This behavior has already been observed in stud- 
ies of redshift distortions of the power spectrum (e.g. Cole et 
al. 1994). 

5. Conclusions 

In this paper, we have studied redshift distortions of clustering 
in the weakly non-linear regime of the gravitational instability. 
Second-order Lagrangian perturbation theory was applied to 
spatially flat cosmological models with R + A/3H2 = 1 and to 
open models with A = 0. We have analytically estimated the 
bispectrnm and the redshift space value S3,,, of the skewness 
factor& E (a3> / (62)2 forboththeunsmoothedandsmoothed 
density field. We considered the case of Gaussian and tophat 
smoothing for scale-invariant initial power-spectra (16, I?) ci 
k”. We also compared our analytical results to measurements 
in N-body experiments (for R = 1). The main results are the 
following: 

1. The skewness factor and the Q-amplitude of the bispectmm 
are seen to be relatively insensitive to projection in redshift 
space in the weakly non-linear regime. In other words, 
the third moment and the square of the second moment are 
globally changed by nearly the same factor [- b:, Eq. (33)], 
both in real space and redshift space. The most important 
differences are found for R = 1, where I&Z -&l/S3 6 0.2, 
which is small in view of the present uncertainties in the 
observationnal determinations of S3. 

2. The skewness, which was already known to be almost inde- 
pendent of the value of the density parameter R (for .d = 0), 
depends only very.weakly on the value of A in a flat uni-- 
verse (f2 + A/3H2 = 1). The same result is valid for the 
bispectmm. 

3. Analytical predictions for S3 are in good agreement with 
measurements in N-body simulations but the finger of god 
effect is felt till quite large scales. Indeed, ourmeasurements 
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suggest that the N-body values of S+ do converge to the 
analytical predictions only in the regime 0’ S 0.1 (with 
u2 = (a’)). In real space, the agreement between theory 
and measurements was quite good for u almost as large as 
unity, 
Peebles (1980) had shown that Ss for the unsmoothed field 

has a specific value. 34/7, if large scale structures arose from 
the gravitational development of Gaussian initial conditions 
inanR = 1,A = 0, model. Bouchet et al. (1992) showed 
that the effect of R and of the real space-redshift space map- 
ping are quite weak. Juszkiewia and Bouchet (1991) and 
Juszkiewicz et al. (1993a) computed the power spectrum de- 
pendence introduced by the smoothing of the evolved density 
field. Juszkiewicz et al. (1993b). and Fry and Gaztairaga (1993) 
analyzed the effect of a non-linear biasing. This paper com- 
pletes the series by an analysis of the redshift space value of S3 
for a smoothed field in a large class of cosmological models. At 
all steps the results were carefully checked with simulations. 
Comparisons with redshift space measurements like those in 
the IRAS 1.2 Jy catalog (Bouchet et al. 1991.1993) can then 
be used to test the hypothesis that the presently observed large 
scale structure was generated by gravitational instability, acting 
on initially Gaussian density fluctuations. 

The real space expression for the bispectrum was first com- 
puted by Fry (1984), while the region of validity of this per- 
turbative result was tested in numerical simulations by Fry et 
al. (1993). Most recently, Fry (1994) pointed out that measure- 
ments of the bispectrum can be used to measure the value of 
the non-linear bias. Here also we complete the series by ana- 
lyzing how Sl and A affect the bispectrnm and the Q p‘arameter, 
measured in redshift space. As a result, it may for the first time 
become possible to use redshift surveys to estimate the linear 
and non-linear bias factors, breaking the coupling between the 
bias and cosmological parameters - Q and A. 
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APPENDIX 

A. From real space to redshift space 

Let us consider a spherical coordinate system centered on the 
observer. The mapping from real space to redshift space can 
then be written as 

P = a2 = (P, 0, cp) - 2 = (z, 8, cp), (Al) 

where L is the “comoving” redshift given by z G V,/(da/dt) 
and V, is the proper velocity projected along the line-of-sight. 
In the Lagrangian approach, the comoving coordinate of a fluid 
element (a “particle”) is 

z(t) = q + EW(Q, t) + cW2’(q, t) + O(2). (A2 
We assume here that the fastest growing modes, gi(t), i = 1,2, 
are dominating. We can thus write Q”‘(q, t) = gi(t)Gci’(q, 2). 
The comoving redshift coordinate of the element of matter is 
then 

z(q) = qr + d1 + fi Ny(q, 0 
+ E2(1 + fz)O(?)(q t) + O(2), z 9 CA31 

with fi = (a/gi)(dgi/da). We also denote by a subscript the 
radial component of a vector, i.e. u, stands for the radial com- 
ponent of the vector u, u, = u . z/z = u . r/r. 

By introducing the new vectors %(‘)(z, t) = ili”‘(q = z, t) 
and @“‘(a~, t) = *“‘(q = z, i) which obey equations (9). (IO), 
but in x space instead of q space, we can express z in Eulerian 
coordinates as 

42) = z + Efi W”(X) 

+ 2 (f2q?;(z) - f, P.v,q + O(E3). 

A. I. density contrast 

(A41 

We now write the density contrast in redshift space, as a function 
of L. In redshift space, the density contrast 6, - (p, - p)/p 
around a particle initially in q is given by the requirement of 
mass conservation: 

I I 
-1 

&(q)= 2 - 1. (A51 

The direct use of Eq. (A5) is however a littleawkward, because 
the vectors z and q are not necessarily collinear. We found 
simpler and more illuminating to first compute the density con- 
trast in real space as a function of the Eulerian coordinate 2, 
using mass conservation requirement (5) and then pass to red- 
shift space using the transformation (A4). The development at 
second order in E of Eq. (5) is 

&(d = -EV,.W 

+ E2 (v,.*(“y+ (I+ 2) v,.p”‘}. 1 b46) 

Using the Eulerian displacements !%“‘(z, t) defined above and 
the following property 

v,.o(‘)= v,.a?’ - h { V,(V,.P)} a!(l) + U(E2), (A7) 

we can’ easily get 6, as a function of z at second order in E - 
(e.g. Bouchet et al. 1994). Then, using the fact that z oc 2, we 
simply write the mapping from real space to redshift space as 

Pz x2 ax 
-=3a;. Pr I I (A81 
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By using Eq. (A4). we are now able to write the density contrast 
in redshift space as a function of z: 

P,(Z) = 1 -E 
( 

V.Q’+ft -&b2W) 

+ e2 
[ 
(V.P)2 + !P.V(V.@(“) - (1 + p.6(2) 

+f1 
( 

-&z2B!L’)V.B’1’ + -&Z2@(?V~$t’) 
> 

+f? 
qd’) 2 

-&Z2~p)-$~’ + 3+- 
1 

(A9) 

The last step is to express bL as a function of r..We introduce 
the new vectors &(*)(r, 1) = @‘(l)(z = z, t) and @(2)(x, t) = 
9 wtz = J, t). These displacements obey the equations (9) 
and (lo), but with the calculations done in z space. Using the 
following properties, 

v,.a!(” = v,.P - Efiq+7z.P), (A101 

-&(Z2rir$)) = -&p%~~)) 
- &I) & ( &(z2$$l))) , (All) 

we obtain the density contrast in redshift space as a function 
of z, as given in Eqs. (20). (21). (23). (24) and (25). In the 
following, we use the”large volume approximation”introduced 
in Sect. 2.2, which results in aconsiderable simplificationof the 
expression of a,(r) (i.e. Eqs. (27), (28)]. 

The second and third moments of the density contrast are 
computed by ensemble averaging: 

(a’<d)* = c2 (6; + 26,At + A;) (A121 

(63w)z = c3 ((6, + AI)~) + 3~~ (6:b2 + 6:A2 

+26,A5.1&i2 + 2fi1A1A2 + A;62 + A;A2) (Al3) 

In order to consider the more general case of a density contrast 
field smoothed with a window W(z), 6,(r) in Eq. (20) has to 
be replaced by 6:(r) = 6, * W(r) . 

A.2. Fourier Transforms 

For aspherically symmetric filter, the smoothed density contrast 
is given by 

6:(z) = c 6, (k)W(k), (Al4) 
k 

and the displacement field is 

!I+, 1) = g&)X $vk? (A13 

Since 

61 1. = -v @(‘)(I) = -91 (f) c 8, (k)eik.2 ., (A161 
k 

we get 

(Al7) 

and 

Al(r,t) = sl(t)C%I(Iz)TV(t)fr~:e’“,‘, 
k 

(Al@ 

62b, 1) = g:(f) 1 &tw&towl~ + ll> 
k,l 

1 +cosQf 
~030s~ e 

-(l+y2 
> 

ei(k+bz(A19) 

Az(r) = g:(t) 1 &(k)&(l)w((k + r()(kpk + lp,) 
k,l 

f+i 

- f22 l, 
- cos2 e tkpk + lpi) 

2 (k + I)2 > 
ei(k+l).r 

, wm 

with 

k.r I.% 
i-z, PIzz, 

In this paper, we assume that the linear density contrast, 
61, is Gaussian. Its Fourier coefficients, 91 ii. are thus uncorre- 
lated and satisfy Bqs. (29). (30). (31). This implies for instance 
[Eq. (3O)l that the first term of (A13) vanishes. The first non 
trivial term of (a3) is then 

(@2) = /js P(k) P(I) W(k) W(I) W(lk + q> 

jjimse(f+i) - (i+~)~b-~os~e+*~ 

by using the equations (Al3), (Al8-A20), (31). In the same 
way, all terms of the second and third moments simplify thanks 
t0 Eq. (31). The averaging over J Of pk and ~JLI factors yields 
functions of cos 8. Eventually one gets: 

(62) = f&J: /&P(k)W2(k) (A22) 

mvYoW(~wwW(lk + Zl> 

(a0 + a2 m2 e + 04 c0s4 e 

+(a, c0sB+a3 c0s30) 

+ (1 - ~0s~ e)’ 
XI (k2 + f2).+xz klcose 

k2+12+2k1cose 
XA23) 

k 
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where the factors 61. ai and xj are listed in Sect. 3 [Eqs. (33), 
(3511. 

Note that by setting fi = f2 = 0 in the expressions above, 
we can recover the real space values of all the quantities just 
computed. JB and JBC had developed techniques to compute 
the skewness of the smoothed density field in real space. These 
techniques will now be described in detail and applied to the 
case of redshift space. The real space results will also be pre- 
sented. 

B. Effect of smoothing 

We now compute the skewness of the density field with either 
no smoothing, a smoothing with a Gaussian filter, or smoothing 
with a top-hat filter. We deal only with power law models, 
P(k) = Ak” . As these models are scale-free, we can set the 
smoothing length to unity without loss of generality. 

B.1. Unsmoothed Result 

In the case without any smoothing (W(k) G 1). the integra- 
tion of the equations (A22). (A23) over k and I in spherical 
coordinates yields 

(6’>=3 
(62}2 6: 

a2 3, l/2 
=’ + 7 + 5 (J,oodk kV’(k))’ 

J 0 
mdkk2p(k)~d,~2P(O~~duX(k,I,u) 

with u = cos 8. The last term 

X(k, I, u) = (1 - u’)‘(t, (k2 + 12) + x2 k/u) 
(k2+P+2klu) WI 

is problematic because k, 1, and u cannot be separated. However, 
thanks to the inequalities k* + I2 > 2kl > 0, it is easy to 
bound this term between polynomials of u. Integrating these 
polynomials, we obtain 

29 23 J 1 19 7 
2ox1 - izx2 < -1 duX(k, 1, u) < =XI + =x2. 

Some numerical values are given in Sect. 4.1. 

B.2. Smoolhing with a Gaussianjilter 

We now consider a density contrast field filtered with a Gaussian 
window of variance unity and normalized to unity. Its Fourier 
transform is then W(k) = exp(-k2/2). The integration over the 
angular variables of k and 1 in the equations (A22) and (A23) 
yields 

+ (1 - u’)’ 
XI (x2 + 3) +x2 xyu 

x2+y2+2xyu 0. 
(B4 

Thecasen= -3 is special and must be treated separately from 
the case of the other n. 

B.2.1. Case when n = -3 

When the power spectrum index n is equal to -3, both (6’) 
and (~5~) diverge. But we can still give a meaning to S3, if we 
define it as its value in the limit, if any, when n tends to -3. By 
introducing E = R + 3, one gets 

P2> = $rQ, 

where I’ is the Euler Gamma function, which behaves as l/c 
when c goes to zero. For (h3), it is convenient to change vari- 
ables, from the Cartesian (x, y) to the polar ones (p, ~0) defined 
by x = p cos cp, y = p sin ‘p. The integration over p from 0 to 00 
then yields 

P3> = JE J’ du J”2dvtl + If;;;,,,. 167r4 -I o 2 

ad-’ Q sin’-’ ‘p (00 + a2u2 + a4u4 

2 +(1-u) 2 tx1 + ux2) + 2(alu + a3u3)tanp) . (BS) 
1 + usin2tp 

The integrand of Eq. (B5) includes the terms: 

(1 + : sin 2~)~’ = 1 - 6 log( 1 + 5 sin 29) + O(C’) 

which always converges since lu/2 sin291 < 1, and 

ax’-’ cp sin+’ ‘p 21-C sinL 29 
1 +usin2+7 =-’ 1 +usin29 +‘Os ‘-’ 9 sin+’ Q 

In this last equation, the first term on the right hand side is 
bounded as c tends to 0, whereas the second one verifies 

J r/2 r2(f/2) dQCOS’-’ psin’-’ Q = - 
0 =Yc) 

(e.g. Gradshteyn & Ryzhik 3.6215). Integrals of terms with an 
odd degree in u vanish and one gets for the skewness 

Sdn z-3)= J a0 + 
=2 a4 16x, 

1 7’7+iE- > 

This yields for instance 
(6’) = ~2% Jmdx zn+‘exp+*, (B3) 

R = 1, 

(b3) = c4g imdxlmdy[‘ldu x”+2yn+2e~p-(f’+~‘+~~u) Q = .l, 

S3 = 5.0217, 

s3 =4.9469. 
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B.2.2. Case when n is not -3 

Theterm 

X(x, y, u) = (1 - u’)’ 
( 

Xl (x2+ 3) +x2 xyu 
xZ+y2+2xyu ) 

in the Eq. (B4) makes it impossible to integrate analytically 
(a3). Fortunately, this term can be bounded. To begin with, 
let us suppose that it is a constant, and let us set u = 2 cos p. 
Equation (B4) then becomes 

(0 
,3~2 243 

= E 27 *,3 J dp sin p 

(G,(p)(X+ao+4a2cos2/3+16a~cos4/3) 

+Fn(p) (4at cosP+ 16a3 cos3/3)), 036) 

with 

J” J 
00 

F,.,(B) E dx dyxn+ly"+3e-L~-y'-2Zyws~, 037) 
0 0 

Jm J 
m 

G,(P) z dx dyx"+2y"+2e-11-y'-2fy~B. VW 
0 0 

We can now evaluate F-t(p), by introducing the new variables 
D and w defined by 

W 
wcotp, y=- 

%,Y) 1 
x=u- 

sin p ’ I I acv, =-- sin /3 

The integral becomes 

F-,(p) = -!- 
00 

J J 
a, 

sin3 p 0 
dw dv e-v’-w’w2. 

WCOlfr 

In the polar coordinates tr = p cos Q, w = p sin Q, the condition 
w~~gives~<cp~~,whilev~wcot~leadStOcOt~~ 
cot/?, or 0 5 p s /?. The integral is then given by 

F-d/3)=$ 
Similar techniques can be used to evaluate 

G-,(/3) = A 
( 

-J- PCOSP 
4 sin2 /3 -G&T’ 1 

From the definitions (B7) and (B8). one can express F,, and 
G,,foranyvalueofn > -1.a.s 

n+l 
Fn(P) = G2)-“-‘dc~sn+, $-t(P), 

GAP) = W-“-ld~;;;l pG-~tP). 

Similarly, F-2 and G-2 are integrals over B of 2 sin p times 
F-1 and C-1 respectively 

F-2U3) = -;PcW, G-2(P) = A. 

Equation (B6) can be integrated, and one obtains an interval for 
S’s according to the computed bounds on the term X. The three- 
dimensional integral of X is first reduced to a one-dimensional 
integral of an impressively long function which happens to be 
very smooth. This function can then be integrated numerically 
to yield an exact value of the skewness. Numerical values of the 
skewness for different power spectra in real and redshift space 
are listed in Table 2. 

B.3. Smoothing with a top-hatfilter 

We now consider a top-hat filter of radius unity and normalized 
to unity. Its Fourier transform is then 

W(k) = 3ke3(sin k - k cos k) = 3 
J 

;k-3/‘J3,2(k), 

where Jp(x) denotes the spherical Bessel function of order p. 
We decompose equation (A23) in two terms according to 

(a3) = E4 (&.h. + Ht.h.1 

where &.h. can be computed analytically and Ht.,,. can not. That 
is 

JJ ( J> 
3 

I 3 t.h. = s k” 1” 3 ; k-‘12 Jj12(k) 

f-3’2 J3/2(/) (k + i1-3’2 J3/2(Ik + 11) (a0 + a2 cm2 e 

+a4 c0s4e+ (a, c0s0+a3 c0s38) , 

Ht.h. E 3//$$rl” (3fi3 
k-3/2J3/2(k)1-3/2 53/2(l) Ih + lIe3f2 J3/2(1k + Zi) 

( 

(I -c0s2e) 
2x1 (k2+12) +x2klcos8 

) k2+12+2klcos8 . 

By introducing the Legendre Polynomials P,,,, and with the 
change of variable 1- -I justified further down, It.h. becomes 

I t.h. = $fi~“De~mdl[:du kn+‘Y2 

k-Y2 J3,2(k-) l-3’2 J3,2(l) W-~‘~ Jo/? 

(a0 PO(U) + a2 P2(u) + 04 Pi(u) 

-~ww+a3P,W) . 
> 

We have used 

u = cos(k, I), w = Ix: - I), 

and 

Ch3 = 3(ao + ‘2+ 
3 = 6(al + SaJ), 

2 4 12 
Q2 = %--a2 + -ad), a3 = -a3, a4 = 

24 
3 7 5 jy4. 

(B9) 
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The term J~/z(w) is clearly a source of troublebecau&z it mixes 
all three variables k, [ and u. Fortunately one can use Gegen- 
batter’s addition theorem, which states for w = Jk2 + I2 - 2klu 
(e.g. Watson 1958): 

W -3’2J3,2(w) = d+(; + m)(kl)-3/2 
mzl) 

J3/2+mW J3/2+m(O i pm+1 (~1. (B*O) 

Equation (B9) can now be expanded into an infinite series of 
products of integrals over k, 1 and IL Integral over u can be sim- 
plified using orthogonality properties of Legendre polynomials, 
to yield: 

du P,(u) &Pm+~(u) = 22 g(2m + Q). 
md3 

Let us define F(v, ,v, -A) E &O” J,(t) Jp(x) z-“dz. It verifies 
(Gradshteyn & Ryzhik 6574.2) 

v+pX+l 
nv, p, -A) = 

W)U 2 ) 

2,4 I-( -v+~~+l)~(v+p;~+l)~(v-~~~+l) 0311) 

for Y + p + 1 > X > 0. The second moment then is 

P2) =&3(;,;.n- 1), 

and is finite for -3 < n < 1. And the skewness is 

- = 1 h. 
(sq2 36; [ 

3ao-5al (1-74(3,+n) 
(2 - n)(5 - n) 

+7L(1)2 (7 (al + a2) - 9 (a1 + Q3) QdW 
00 

+ c xl (d2 wq + 3) (QO + a2 + Q4) 

-~~+5)(01,+03)Qn((l))l, 

with 

‘R,(q) = F(3/2,2q + 3/2, n - 1) 
3(3/2,3/2, n - 1) ’ 

Q,(q) = 
3(3/2,2q + 512, n) 7(3/2,2q + 5/2, n - 2) 

T(3/2,2q + 3/2, n - 1)2 . 

Wtth the help of Eq. (Bll) and the identity 

r(x) 
rtz - k) 

these ratios simplify to: 

Rn(q) = (-l) 
q r(q + 9) r(q + y) r(F) r(y) 
r(y) r(g rcq + v)ryq+ 9)’ 

n)(2q + n)(2q + 3 + n) 
‘,(‘) = !t(iq+2-n)(2q+5-n)’ 

One can now identify some very simple special cases: 

n=-3, *=$, 
1 

n = -2, *z$(~~+~~-~+~~-$!.), 
1 

n = 0, S34 = :(a0 - 3). 
1 

For n = 1, RI(q) = (-l)r, Ql(q) = 0, and the series diverges. 
For other values of n the series has to be computed numerically 
and appears to converge very fast at least for n < 0. 

We now have to compute the extra term H in (a3). For 
n = -3, (a2) diverges and in the expansion of H according to 
Eq. (BlO) only the first term, with index m = 0, is divergent and 
contributes to skewness. One then gets Ss = br2(cro + 8x1/15). 
For all other values of n, H has to be computed numerically. 
This time, the integral cannot be reduced or simplified, and 
must he calculated as a three-dimensional one. Because of the 
presence of Bessel functions in the integrand. it oscillates very 
rapidly and we chose to use a Monte-Carlo integration. Ac- 
cording to the values of zt and tt (see Table) these integrals 
give a small contribution to the skewness and the numerical 
calculations could be done with a relative uncertainty that we 
estimate to be better than 1%. Thus, our numerical values of 
skewness are quite accurate, and the errors come mainly from 
the approximations we used for the logarithmic derivatives of 
the growth rates ft and f2 when R # 1. 

C. Measurement of S,: error-bars 

Here, we explain how we computed the error-bars shown in 
Fig. 5. Such errors are mainly due to finite volume effects and to 
the finite sampling of the measured density field. Note however 
that there will necessarily be some differences between various 
estimates of S3(a2) (corresponding to various snapshots in a 
simulation) at given n. One can estimate an average standard 
deviation associated to such variations 

1 
Ais .., - 

4s - 1 t3 ( s3.s - (S3))2, 

rnqsilot s 

(Cl) 

where Nss is the total number of snapshots considered (three in 
our case) and (S3) is the average of the measured So over 
all the snapshots (S3.s is of course the measured value of Ss in 
the snapshot S). Although this error is in fact correlated with 
the finite volume error and the finite sampling errors which we 
discuss hereafter, it can also be due to other defects, such as 
those related to initial conditions. We shall consider such an 
error as independent from others. 

To estimate the errors due to finite volume effects, we first 
fit the large-p tail of the measured distribution function P(p) by 
an exponential 

P(P) = P(h,> exp(-Pb - pmlA G9 
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(C3) 

The error At+ due to finite volume effects on Ss, is always in 
the same direction, i.e., Ss is always underestimated by direct 
measurements (CBS), since one misses the positive contribution 
due to the missing tail of the exponential. Following CBS, we 
use their Eq. (42) to write 

(C4) 

with< z Pp-. The fit is done using a least square fit method 
in the (p, log P) coordinate system (where an exponential looks 
like a straight line). 

The smoothing of the density field can be done either in 
real space or in Fourier space. The smoothing in Fourier space 
is much simpler to do than in real space, and much faster in 
terms of computer calculation. However, in the case one works 
in redshift space, it is impossible, practically, to have a sample 
obeying periodic boundary conditions, which makes the Fourier 
space calculation difficult, because of edge effects. Such arti- 
facts are expected to be small if the scale considered is small 
compared to the sample size, but it can become rather important 
(inducing errors larger than - 10%) as soon as .! Z &,/20. 
We thus decided to make all the calculations in real space, both 
for a top-hat smoothing and a Gaussian smoothing. In the case 
of a Gaussian smoothing, there is the added complication of the 
infinite spatial extent of the filter. One thus need to truncate the 
window at a finite radius P. We chose to make such a truncation 
at P = Tl with T = 3, i.e., 

.2 
Wf(r) o( exp -- , 

( > 2t? 
r < 34 

Wf(r1 = 0, r > 3L 

(C51 

A comparison of the resultsobtained using the procedure above 
with those obtained in Fourier space (withoutredshift mapping) 
shows very little differences, much less than one percent. More- 
over, we also checked that taking T = 4 instead of T = 3 did 
not significantly change the results. 

Note that the calculations are much more costly for a Gaus- 
sian filter than for a top-hat one, because, at a given site, we 
have to take into account the contribution of the density field 
up to 3e in the first case and only up to .! in the second case. 
Hence, we did slightly less accurate calculations for a Gaussian 
smoothing than for a top-hat smoothing, in terms of number of 
sites sampled to evaluate the smoothed density distribution. In 
both cases, we computed the smoothed density field on a lattice 
with N 5 f iVi sites, but fVs was smaller for a Gaussian smooth- 
ing than for a top-hat smoothing. To sample appropriately the 
smoothed density field with this method, Ns should be large 
enough that the distance between two sites is smaller than the 
smoothing scale &? considered. In other words, we should have 
e Z L&Ns, a condition fulfilled by our calculations. In order 

to evaluate the error associated with finite sampling, we used 
a different method for a Gaussian smoothing and for a top-hat 
smoothing. In the first case, we had an integral approach, and 
estimated the error due to finite sampling by assuming that we 
used the trapezoidal rule method to compute the integral. Let 
6i,j,k be the estimate of the smoothed density contrast at the site 
(i, j, k). The estimator of (@) is then 

WQ)> = f c 6fjk. ’ i,J,.t 
We estimate the error on this quantity by 

(C6) 

with 

F\,i,j,k = 62, j k + S,Ci_, j k - 2sp’,k, 
Fz,i,j,k = S,~~~~k + bf. ’ ’ - 2i$,kt d-1.” 
bi,j,k = ‘i,j,k+l +*i,j,k-1 - 25i,j,k' 

(W 

In the case of a top-hat smoothing, the error was estimated 
in a more standard way, using the count-in-cell formalism. If 
we forget discreteness effects to simplify the notations (but we 
have fully corrected for them in the calculation of u2 and Ss), 
we can write 

[AFs (@)]” - + [< 62Q > - < bQ >2] . 0) 
s 

This equation actually assumes implicitly that the cells were 
thrown at random in the sample, which is not the case in our 
algorithm. In other words, we certainly overestimate here the 
error, which should be proportional to A$-’ rather than Ns-“?-. 

To estimate the error on S3 = ( b3) / (a2)‘, we use the 
propagation of errors formula, i.e. 

~&d312= 
[Axx ( b3)12 

V2)’ 

+41(63) Axx (~‘)I’ 
(by ’ 

(ClO) 

with XX&V or FS. After that, we finally write 

tAS312 = Wssf%12 (cl*) 

+& c 1 hvS3.s12+bd'3,s12}, K12) 

snapshol s 

where [A&Ss,s12 stands for the estimate of the error of kind 
XX for the snapshot S. 
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